110AH Final Review Problems

Colin Ni

December 10, 2023

Star means highly recommended.
Problem 1*. Let $n \geq 3$. Construct an injection $D_{2 n} \hookrightarrow S_{n}$. Prove or disprove: S_{n} is the smallest symmetric group into which $D_{2 n}$ embeds.

Problem 2*. Let A and B be abelian groups. Denote by $\operatorname{Hom}(A, B)$ the set of group homomorphisms $A \rightarrow B$.
(a) Explain how $\operatorname{Hom}(A, B)$ is naturally an abelian group.
(b) Describe $\operatorname{Hom}(\mathbb{Z}, B)$ and $\operatorname{Hom}\left(C_{n}, B\right)$.
(c) In particular, for A and B cyclic, compute $\operatorname{Hom}(A, B)$.

Problem 3*. A theorem of Gauss says that $(\mathbb{Z} / n \mathbb{Z})^{\times}$, where $n \geq 1$, is cyclic if and only if n is $1,2,4$, or p^{k} or $2 p^{k}$ for some odd prime p and $k>0$. Use this to help fill out the following table of information about $(\mathbb{Z} / n \mathbb{Z})^{\times}$:

n	cyclic	order	structure	gens	\# gens	min size gen set
3						
4						
5						
6						
7	yes	6	C_{6}	1,5	2	1 (e.g. $\{5\})$
8	no	4	$C_{2} \times C_{2}$	0	none	2 (e.g. $\{3,5\})$
9						
10						
11						
12						
24						
122						
1125						
7938						

Problem 4*. Find the smallest $n \geq 1$ where S_{n} has an element of order $5 n$.

Problem 5. Let p be an odd prime. Show that the only groups of order $2 p$ are $C_{2 p}$ and $D_{2 p}$.

Problem 6. Is the following 4×4 sliding tile puzzle solvable?:

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

Problem 7*.

(a) Show that every dihedral group has an index 2 subgroup, and generalize this to exhibit an infinite nonabelian group that has an index 2 subgroup.
(b) Denote by S_{∞} the group of permutations of \mathbb{N}, where $S_{n} \hookrightarrow S_{\infty}$ in the natural way. A theorem of Schreier-Ulam says that the only proper nontrivial normal subgroups of S_{∞} are $\bigcup_{n \geq 1} S_{n}$ and $\bigcup_{n \geq 1} A_{n}$. Use this to show that S_{∞} does not have an index 2 subgroup.
(c) (Optional) Show that the only groups whose proper nontrivial subgroups all have index 2 are the simple cyclic groups, C_{4}, and $C_{2} \times C_{2}$.

Problem 8. Prove, or disprove and find a minimal counterexample:

- If G is a finite group and $d||G|$, then G has an element of order d.
- If G is a finite group and $d||G|$, then G has a subgroup of order d.

You may use that the list of non-abelian groups in increasing order starts with $D_{6}, D_{8}, Q_{8}, D_{10}, D_{12}, A_{4}, \ldots$.

Problem 9*.

(a) Show that if $S \subset G$ is a normal subset of a group, i.e. $g S g^{-1} \subset S$ for all $g \in G$, then $\langle S\rangle$ is normal.
(b) Show that $A_{3 \cdot 5^{2} .19}$ is generated by the permutations of the form

$$
\left(a_{1} a_{2} a_{3}\right)\left(b_{1} b_{2} b_{3} b_{4} b_{5}\right)\left(c_{1} c_{2} c_{3} c_{4} c_{5}\right)\left(d_{1} d_{2} \cdots d_{18} d_{19}\right)
$$

where the $a_{i}, b_{i}, c_{i}, d_{i}$ are pairwise distinct.
(c) Show that a nontrivial simple group is generated by its elements of order p if and only if contains an element of order p.

Problem 10. A group G is said to be k-abelian if $(a b)^{k}=a^{k} b^{k}$ for every $a, b \in G$. Show that if a group G is $k-,(k+1)$-, and $(k+2)$-abelian for some $k \in \mathbb{Z}$, then G is abelian.

Problem 11. Let p be an odd prime. The Legendre symbol $\left(\frac{\bar{p}):(\mathbb{Z} / p \mathbb{Z})^{*} \rightarrow}{}\right.$ $\{ \pm 1\}$ is defined as

$$
\left(\frac{a}{p}\right)= \begin{cases}+1 & a \text { is a square in }(\mathbb{Z} / p \mathbb{Z})^{*} \\ -1 & a \text { is not a square in }(\mathbb{Z} / p \mathbb{Z})^{*}\end{cases}
$$

Prove that $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$ for any $a, b \in(\mathbb{Z} / p \mathbb{Z})^{*}$.
Problem 12*. Let $G \leq \mathbb{C}^{*}$ the group of p-power roots of unity, where p is a fixed prime. Show that there exists a nontrivial $N \unlhd G$ such that $G \cong G / N$

Problem 13. For which n, m can S_{n} be embedded into A_{m} ?
Problem 14*. A group G is finitely generated if there exists a finite set $S \subset G$ such that $G=\langle S\rangle$. Obviously finite groups are finitely generated, so let us examine infinite groups.
(a) Show that \mathbb{Z}^{n} is finitely generated.
(b) Show that \mathbb{Q} is not finitely generated because its finitely generated subgroups are cyclic.
(c) Show that \mathbb{R} is not finitely generated but that it has finitely generated subgroups that are not cyclic.
(d) Show that the finitely generated group $\left\langle\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)\right\rangle \leq \mathrm{GL}_{2}(\mathbb{Q})$ has a subgroup that is not finitely generated, namely the one consisting of the matrices in the group with ones on the diagonal.

Remark. A theorem of Higman, Neumann, and Neumann says that every countable group can be embedded into a group generated by two elements.

Problem 15. Given a set of symbols S and a set of relations R which are words in these symbols, the group $\langle S \mid R\rangle$ is the quotient of the free group generated by S by the normal subgroup generated by R. Find a presentation of the groups $\mathbb{Z}, \mathbb{Z} / n \mathbb{Z}$, and $\mathbb{Z} \times \mathbb{Z}$.

Problem 16. Denote by

$$
Q_{8}=\left\langle\begin{array}{c|c}
-1, i, j, k & \begin{array}{c}
(-1)^{2}=1 \\
i^{2}=j^{2}=k^{2}=i j k=-1 \\
-1 \text { is central }
\end{array}
\end{array}\right\rangle
$$

the quaternion group. For $G \in\left\{Q_{8}, D_{8}\right\}$ do the following:
(a) Show that $|G|=8$, and write down the multiplication table of G.
(b) Determine the subgroup lattice of G, and optionally for each subgroup determine its normalizer.
(c) Find all 2-element subsets $S \subset G$ such that $\langle S\rangle=G$.
(d) For each $N \unlhd G$, compute the isomorphism class of G / N.
(e) Determine the conjugacy classes of G.

Problem 17*. (Do Problem 16 first, or look at the answers to it in Solutions.) Let G be a finite group. Prove or disprove:
(a) If all subgroups of G are normal, then G is abelian.
(b) There exists $H, K \lesseqgtr G$, one normal, such that $G=H K$ and $H \cap K=1$.
(c) There exists an injection $G \hookrightarrow S_{|G|-1}$.
(d) If $H \leq G$, then there exists $N \unlhd G$ such that $G / N \cong H$.
(e) If $N \unlhd G$, then there exists $H \leq G$ such that $G / N \cong H$.
(f) If $H, K \unlhd G$ and $G / H \cong G / K$, then $H \cong K$.
(g) If $H, K \unlhd G$ and $H \cong K$, then $G / H \cong G / K$.
Remark. Cayley's theorem exhibits an injection $G \hookrightarrow S_{|G|}$ for any finite group G, so part (c) is asking whether this $|G|$ is sharp.

Problem 18*. Show that a transitive group action is the same thing as leftmultiplication on a coset space. More precisely, show that if G acts transitively on a set X, then $X \cong G / G_{x}$ as G-sets for any $x \in X$.

Problem 19*. Show that a finite group is not the union of the conjugates of one of its proper subgroups.

Problem 20*. Let G be a finite group, and let $d \in \mathbb{N}$. Prove and generalize, or disprove:
(a) If $d||G|$, then G acts transitively on a set with d elements.
(b) If $|G|=144$, then G acts transitively on a set with 9 elements.

Problem 21. A group G is solvable if there exist subgroups

$$
1=N_{1} \unlhd N_{2} \unlhd \cdots \unlhd N_{r-1} \unlhd N_{r}=G
$$

such that N_{i+1} / N_{i} is abelian for $i=1, \ldots, r-1$. Prove the following using the isomorphism theorems:
(a) A subgroup of a solvable group is solvable.
(b) The homomorphic image of a solvable group is solvable.
(c) Show that if $N \unlhd G$ and G / N are solvable, then G is solvable.

Problem 22. Show that any p-group or any group G with order $p q, p^{2} q, p^{2} q^{2}$, or $p q r$ where p, q, r are primes is solvable.

Problem 23. Recall that

$$
S_{n} \cong\left\langle x_{1}, \ldots, x_{n-1} \left\lvert\, \begin{array}{c}
x_{i}^{2} \text { for } i=1, \ldots, n-1 \\
\left(x_{i} x_{i+1}\right)^{3} \text { for } i=1, \ldots, n-2 \\
\left(x_{i} x_{j}\right)^{2} \text { for } i<j \text { and }|j-i|>1
\end{array}\right.\right\rangle
$$

via the isomorphism $\tau_{i}=(i i+1) \longleftrightarrow x_{i}$.
(a) Two triple transpositions in S_{6} share $0,1,2$, or 3 transpositions. In each case, what is the cycle type of their product?
(b) Find an automorphism $S_{6} \rightarrow S_{6}$ that takes transpositions to triple transpositions, and hence is not an inner automorphism.

Problem 24*. Let G be a group. The commutator of $x, y \in G$ is defined to be $[x, y]=x y x^{-1} y^{-1}$, and the commutator subgroup $G^{\prime} \leq G$ is the subgroup generated by all commutators.
(a) Show that G is a abelian if and only if $G^{\prime}=1$.
(b) Show that G^{\prime} is the smallest normal subgroup with abelian quotient, i.e. if $N \unlhd G$ and G / N is abelian, then $G^{\prime} \leq N$.
(c) Show that any subgroup containing G^{\prime} is normal.

Problem 25. Show that a proper subgroup of a p-group is properly contained in its normalizer.

Problem 26*. Compute the order of the normalizer $N_{S_{p}}(C)$ where $C \leq S_{p}$ is a cyclic subgroup of order p.

Problem 27. Let G be a finite group and X a finite G-set. Prove Burnside's lemma:

$$
|X / G|=\frac{1}{|G|} \sum_{g \in G}\left|X^{g}\right|
$$

Deduce that a finite group acting transitively on a non-singleton set has a fixed-point-free element.

Problem 28*.

(a) (Optional) Prove the following extension of Bézout's identity: For $a, b \in \mathbb{N}$ coprime and $c \geq(a-1)(b-1)$, there exists $x, y \geq 0$ such that $a x+b y=c$.
(b) Let G be a finite group of order 35. Determine the set of the sizes of the finite G-sets with no fixed points. Optionally, generalize.

Problem 29*. Let H be a nontrivial p-group for some prime p.
(a) Show that the center of H is nontrivial, using that the size of a conjugacy class in a finite group divides the order of the group.
(b) Write $|H|=p^{n}$ for some $n \geq 1$. Show that H has a subgroup of order p^{k} for every $0 \leq k \leq n$.
(c) Suppose H injects into a finite group G with coprime order. Prove and generalize, or disprove and fix: H contains all elements in G that have order p.

Problem 30. Suppose G is a finite simple group that has a proper subgroup of index n. Recall that $|G| \mid n!$. Show that in fact $|G| \left\lvert\, \frac{1}{2} n!\right.$.

Problem 31. (Optional) The homophonic group H is the group generated by the 26 letters of the English alphabet modulo homophones, i.e. two English words with the same pronunciation are equal in H. Show that H is trivial.

Problem 32. Let G be a group, and let $S, T \leq G$ be subgroups.
(a) Show that $S T=T S$ if and only if $S T \leq G$ if and only if $T S \leq G$.
(b) Show that if S or T is normal, then equivalent statements in part (a) hold.

Problem 33*. Let G be a group with $N \unlhd G$ and $H \leq G$. Show that the following definitions for G being the inner semidirect product of N and H are equivalent:
(i) $G=N H$ and $N \cap H=1$
$(i)^{\prime} G=H N$ and $H \cap N=1$
(ii) for every $g \in G$, there exists unique $n \in N$ and $h \in H$ such that $g=n h$
$(\text { ii })^{\prime}$ for every $g \in G$, there exists unique $h \in H$ and $n \in N$ such that $g=h n$
(iii) $H \hookrightarrow G \rightarrow G / N$ is an isomorphism

Problem 34*. Show that $D_{2 n}$, where $n \geq 3$, is a nontrivial semidirect product but that neither C_{4} nor Q_{8} is.

Problem 35. Let p be a prime, set $X=\{1, \ldots, p\}$, and let $G \leq S_{p}$ be transitive.
(a) Show that G acts on X transitively if and only if G has a Sylow p-subgroup.
(b) Define n_{G} and r_{G} for a Sylow p-subgroup $P \leq G$ as follows:

Show that n_{G} and r_{G} are independent of the Sylow p-subgroup $P \leq G$. Note that $|G|=n_{G} r_{G} p$ and that $r_{G} \mid(p-1)$ by Problem 26.
(c) Show that if $r_{G}=1$, then $G \cong C_{p}$.
(d) Suppose $|G|=n r p$ where $r<p$ is also prime, $n>1$, and $n \equiv 1 \bmod p$. Show that $r=r_{G}$ and $n=n_{G}$. Moreover, show that any nontrivial $N \unlhd G$ is transitive and that $n_{N}=n$ and $r_{N}=r$. Deduce that G is simple.

Problem 36. A Steiner system $S(\ell, m, n)$ for positive integers $\ell<m<n$ is a collection of distinct size- m subsets of $\{1, \ldots, n\}$ called blocks such that every size- ℓ subset of $\{1, \ldots, n\}$ is contained in exactly one block. The automorphism group $\operatorname{Aut}(S(\ell, m, n))$ is the subgroup of S_{n} taking blocks to blocks.
(a) Explain how the following picture depicts a $S(2,3,7)$:

(b) Suppose there exists a $S(\ell, m, n)$ for some $\ell \geq 2$. Show that there exists a $S(\ell-1, m-1, n-1)$ such that its automorphism group is a stabilizer subgroup of the action of $S(\ell, m, n)$ on $\{1, \ldots, n\}$. Moreover, show that if $\operatorname{Aut}(S(\ell, m, n))$ is k-transitive, then $\operatorname{Aut}(S(\ell-1, m-1, n-1))$ is $(k-1)$ transitive.
(c) There exists a unique $S(5,6,12)$ and a unique $S(5,8,24)$. Denote by M_{24} and M_{12} their automorphism groups which are both 5-transitive and which
are called Mathieu groups. Spam part (b) to fill out or make sense of the first three columns of the following table:

group	order	transitivity	simple	sporadic
M_{24}	$2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23$	5		yes
M_{23}				yes
M_{22}				yes
M_{21}			yes	no
M_{20}			no	no
M_{12}	$2^{6} \cdot 3^{3} \cdot 5 \cdot 11$	5		yes
M_{11}				yes
M_{10}			no	no
M_{9}			no	no
M_{8}			no	no

(d) Show that $M_{24}, M_{23}, M_{22}, M_{12}$, and M_{11} are simple, using that M_{21} is simple (but not sporadic), Problem 35, and the following simplicity criterion, which is Theorem 9.25 in Rotman's Introduction to the Theory of Groups. Let X be a faithful k-transitive G-set for some $k \geq 2$, and assume G has a simple stabilizer subgroup. Then the following are true:

- If $k \geq 4$, then G is simple.
- If $k \geq 3$ and $|X|$ is not a power of 2 , then $G \cong S_{3}$ or G is simple.
- If $k \geq 2$ and $|X|$ is not a prime power, then G is simple.

